

Crack Notes [Physics 2]

Mass/Weight

- Mass measures an object's inertia (tendency to remain in current state of motion)
 - O Doesn't change no matter where you are/what forces are applied
- Weight is the gravitational force, equal to W = mg
- Center of mass is the "balance point" where many objects can be considered a single point mass

$$(\chi_{center},y_{center}) = \left(\frac{m_1x_1+m_2x_2+\cdots}{m_1+m_2+\cdots},\frac{m_1y_1+m_2y_2+\cdots}{m_1+m_2+\cdots}\right)$$
 Center of gravity is the same as the center of mass

Types of Force

- You only need to look at forces acting on your system
- Gravitational force: W = mg
- Electromagnetic force: only if there are charges/magnets (Lecture 7)
- Contact force: anything touching your system
 - O Split into components parallel and perpendicular to your surface
 - O Most contact forces are ONLY one of the above i.e. friction, normal force, etc.

Newton's Laws

Law of inertia - object at rest will stay at rest, object in motion will stay in motion unless outside net force acts on it

For every action there's an equal and opposite reaction

Law of Gravitation

$$F = G \frac{m_1 m_2}{r^2}$$

- Always points from one mass to another
- For two masses, there are two equal forces pointing in opposite directions

Inclined Planes

- Normal force: force of inclined plane pushing back against gravitational force
 - ALWAYS PERPENDICULAR TO THE SURFACE
- $\circ F_N = mg\cos\theta$ Net force on object (in absence of friction): $F_{net} = mg\sin\theta$

Crack Notes [Physics 2] Force

Centripetal Force

$$F_c = m \frac{v^2}{r}, \qquad a_c = \frac{v^2}{r}$$

- Deals with objects moving/spinning in circles
- Always points towards the center of the circle
- Always caused by another force
- THINGS IN ORBIT: set centripetal force = gravitational force

$$F_g = F_c$$

$$\frac{GMm}{r^2} = m\frac{v^2}{r}$$

$$v^2 = \frac{GM}{r}$$

$$v = \sqrt{\frac{GM}{r}}$$

• What does this mean?

Orbit velocity depends ONLY on the mass of the Earth and the orbital radius, NOT the mass of the object \rightarrow For any two objects, if they're orbiting at the same distance from the Earth, they're traveling at the same velocity

Frictional Force

$$f_{S} \leq \mu_{S} F_{N}, \qquad f_{k} = \mu_{k} F_{N}$$

- ALWAYS PARALLEL TO THE SURFACE
- Static friction f_s : when objects are not moving
- Kinetic friction f_k : when objects are sliding relative to each other
- Usually, $\mu_s > \mu_k$

Tension

- Equal and opposite forces on opposite sides of a rope
- Total tension is equal to the force at either end NOT THEIR SUM!

Hooke's Law

$$F = -k\Delta x = -k(x_{stretched} - x_{natural})$$

- Force due to a compressed or stretched object (i.e. a spring)
- Force is always in the opposite direction of the displacement