

Crack Notes [Physics 4] Momentum, Machines & Radioactive Decay

Momentum

- Measure of an object's tendency to continue along its present path
- p = mv (units: kg m/s)
- Is a vector so split it into components
- · Always conserved for any collision

Collisions

Elastic: when mechanical energy is conserved (most cases: no U so only K is conserved)

$$\sum U_i + \sum K_i = \sum U_f + \sum K_f$$
, $\sum p_{i,x} = \sum p_{f,x}$, $\sum p_{i,y} = \sum p_{f,y}$

• Inelastic: when some energy turns into internal energy/heat i.e. when objects stick together after colliding

$$\sum p_{i,x} = \sum p_{f,x}, \qquad \sum p_{i,y} = \sum p_{f,y}$$

• Always split momentum into x and y components and calculate separately

Impulse

- Relates change in momentum with average force applied:
- $J = \Delta p = F_{avg} \Delta t$
- For an object with a certain momentum, taking more time to slow it down (larger Δt) will require less force. Taking less time to slow it down will require more force
- Object bouncing off a wall has initial momentum mv, final momentum -mv so $\Delta p = -2mv = F_{ava}\Delta t$

Machines

- BASIC GUIDELINE: Force and distance applied are inversely proportional to do the same amount of work
- OTHER BASIC GUIDELINE: Assume minimum applied force to move the object; i.e. dynamic equilibrium

Lifting straight up

- Resisting force: F = mg
- Distance: d = h
- Total work done: W = mgh

Ramp

- Force along the ramp: $F = mg \sin \theta$
- Distance along the ramp: $d = h/\sin\theta$
- Total work done: W = mgh
- Decrease F by a factor of $\sin \theta \rightarrow \text{increase } d$ by a factor of $1/\sin \theta$

Lever

- Choose rotation point to be fulcrum, set $\Sigma \tau_{cw} = \Sigma \tau_{ccw}$ (don't forget weight of lever if it's not massless)
- If lever is massless, weight is a distance x from fulcrum; force is applied to a distance ax on the other side:

$$\Sigma \tau_{cw} = (ax)(F) = (x)(mg) = \Sigma \tau_{ccw}$$

- Force applied: F = mg/a
- Distance: angles are the same, so d = ah if object moves up h
- Total work done: W = mgh
- Decrease F by a factor of $a \rightarrow$ increase d by a factor of a

Crack Notes [Physics 4] Momentum, Machines & Radioactive Decay

Concentric pulley

- Count the # of tensions being used to pull the mass upwards, let's call it n
- Force applied: F = mg/n
- Distance applied: d = nh
- Total work done: W = mgh
- Decrease F by a factor of $n \rightarrow$ increase d by a factor of n

Eccentric pulley

- Actually a lever in disguise, but the force applied changes at every point
- Choose rotation point to be rotation point of pulley, set $\Sigma \tau_{cw} = \Sigma \tau_{ccw}$ (don't forget weight of lever)
- If pulley is massless, weight rope is r from rotation point; force rope is ar:

$$\sum \tau_{cw} = (ax)(F) = (x)(mg) = \sum \tau_{ccw}$$

- Force applied: F = mg/a
- Distance: d = ah if object moves up h
- Total work done: W = mgh
- Decrease F by a factor of $a \rightarrow$ increase d by a factor of a

General rule for levers/eccentric pulleys:

When weight is closer to rotation point, you need to apply less force over greater distance to lift it

Radioactive Decay

- If an atom has lots of protons, it needs many more neutrons to stabilize the nucleus.
- Half-life: the amount of time it takes for half of a substance to disappear
 - O After n half lives, the substance will be left with $\left(\frac{1}{2}\right)^n$ of its original amount
- Types of decay remember to balance equations
 - o Alpha decay: atom loses helium nucleus, or $\frac{4}{2}\alpha$
 - o Beta decay: atom loses an electron, or $_{-1}^{0}\beta$ (a neutron turns into a proton)
 - o Positron emission: atom loses a positron, or ${}^0_1\beta$ (a proton turns into a neutron)
 - o *Electron capture*: atom absorbs an electron $_{-1}^{0}\beta$ (a proton turns into a neutron), emits a gamma ray $_{0}^{0}\gamma$
 - o Annihilation: electron and positron combine to form two gamma rays
- Fusion: two nuclei combine to form heavier nucleus
 - o Energy is released when *small nuclei* undergo fusion because they form a more stable nucleus or have higher binding energy
- <u>Fission</u>: a nucleus splits to form two lighter nuclei
 - o Energy is released when *large nuclei* undergo fission because they form a more stable nucleus or have higher binding energy

Mass Defect

- $E = mc^2$, some mass is used as energy to hold nucleus together
- Sum of masses of all parts of an atom > actual mass of the atom

