

Crack Notes [Physics 6] Waves

Definitions

Wave: transfer of momentum/energy from a point to another

Mechanical wave: physical displacement of medium

Transverse wave: displacement perpendicular to propagation direction *Longitudinal wave*: displacement parallel to propagation direction

Surface wave: i.e. waves in ocean, gravity plays a role

Sine Function Waves

Describes most transverse/longitudinal waves

Wavelength λ : the distance between the wave's "repeats"

Frequency f: number of wavelengths that go through an imaginary line in 1 second (Hz)

Period T: number of seconds it takes for each wavelength to go through imaginary line

$$_{\text{FORMULAS:}}v = f\lambda$$
, $T = 1/f$

Amplitude A: how "strong" the wave is, equal to max displacement from zero Velocity depends on the medium

- -> Heavier/denser medium (more inertia) = slower wave
- -> Stiffer medium (more elasticity) = faster wave
- -> In a gas, higher temperature = faster wave
- -> SURFACE WAVES: velocity doesn't depend on density, only depth

Intensity I: wave power, units are W/m². Depends on frequency² and amplitude²

-> Decibels:
$$\beta = 10 \log \frac{I}{I_0}$$
 - always has to be relative to something

Increasing intensity by a factor of ten = +10 decibels So if intensity is increased by 1000000x, it's only +60 decibels

Wave Effects

Waves can interfere, or boost each other/cancel each other out

Constructive interference: waves have displacement in same direction at certain points, increasing the total displacement

Destructive interference: waves have displacement in opposite direction at certain points, decreasing the total displacement

Beat frequency: when two waves of different frequencies are mixed together, will have constructive at some points and destructive at other points. $f_{beat} = |f_1 - f_2|$

Waves traveling between mediums: wavelength will change, FREQUENCY STAYS THE SAME Wave reflection: next medium more dense = inverted, less dense = upright

Crack Notes [Physics 6] Waves

Standing wave: when wave doesn't look like it's moving, just going up and down

- -> Some points will always have 0 amplitude = NODES
- -> Some points will oscillate between max positive and min negative amplitudes = ANTI NODES

Usually only certain frequencies can have standing waves

String with both ends fixed/pipe closed or open at both ends:

- -> Fundamental wavelength/first harmonic: 2 nodes at ends
- -> Second harmonic: 3 nodes, third harmonic: 4 nodes, etc

$$-> L = \frac{n\lambda_n}{2}, n = 1, 2, 3, ...$$

String with one end fixed/pipe open on one end, closed on other end:

- -> Fundamental wavelength/first harmonic: 1 node at closed/tied end
- -> Second harmonic: 2 nodes, third harmonic: 3 nodes, etc

$$-> L = \frac{n\lambda_n}{4}, n = 1, 3, 5, ...$$

Standing waves will go up/down at the *resonant frequency* which is given by $f = \frac{v}{\lambda}$

Simple Harmonic Motion

CONSERVATION OF ENERGY

Max displacement: highest potential energy, zero kinetic energy Min displacement: zero potential energy, highest kinetic energy

Mass on a spring: $T=2\pi\sqrt{\frac{m}{k}}$, $\omega=2\pi f=\sqrt{\frac{k}{m}}$, m is mass of object, k is spring constant

Pendulum:
$$T = 2\pi \sqrt{\frac{L}{g}}$$
, $\omega = 2\pi f = \sqrt{\frac{g}{L}}$, L is length of string, g is gravity

General principles:

- -> Acceleration, displacement directly proportional but opposite in sign (highest displacement = highest acceleration in opposite direction)
- -> Acceleration, frequency² directly proportional (2x frequency = 4x acceleration)

Doppler Effect

When source of waves is moving relative to observer

$$\frac{\Delta f}{f_s} = \frac{v}{c}$$
, $\frac{\Delta \lambda}{\lambda_s} = \frac{v}{c}$ where v is how fast source, observer are moving towards each other