

Crack Notes [Physics 8] Lights & Optics

Electromagnetic Waves

Have an oscillating electric/magnetic field, travels at speed c = E/B

Visible light: wavelengths 390 nm (violet)-700 nm (red), backwards it's ROYGBIV

Ultraviolet: wavelength < 390 nm *Infrared*: wavelength > 700 nm

Speed: $c = f\lambda$

Refractive index: n = c / v, higher n = slower light = shorter wavelength (but same freq)

Polarized light: electric field of all light oriented in same direction

Energy of photon: E = hf

Reflection

ANGLE OF INCIDENCE = ANGLE OF REFLECTION

Refraction

Snell's law $n_1 \sin \theta_1 = n_2 \sin \theta_2$, so higher n means light is closer to perpendicular axis

When going from high n1 to low n2: critical $angle \theta = \sin^{-1}\left(\frac{n_2}{n_1}\right)$, if angle of incidence is larger

than the critical angle then there will be no refraction (TOTAL INTERNAL REFLECTION)

Dispersion: shorter wavelengths usually refract MORE

Diffraction

Waves passing through small openings will become circular and can interfere, forming a light/dark diffraction pattern on the opposite side

Mirrors

CONCAVE mirror bends towards observer (from perspective of observer, looks like a CAVE)

CONVEX mirror bends away from observer

CONCAVE mirror will CONVERGE light, CONVEX mirror will DIVERGE light

Lenses

CONCAVE lens bends towards observer (aka CAVE)

CONVEX lens bends away from observer

CONCAVE lens will DIVERGE light, CONVEX lens will CONVERGE light (opposite of mirrors)

Focal length = 1/2 * (Radius of Curvature)

Crack Notes [Physics 8] Lights & Optics

How to Deal with Optics

- 1. Draw lens/mirror
- 2. Draw eye on LEFT side
- 3. If lens, draw object on RIGHT side, if mirror, draw object on LEFT side
- 4. Draw HORIZONTAL line from object to mirror/lens, then either reflect (mirror) or refract (lens) towards focal point. Might have to draw dotted line to focal point.
- 5. Draw DIAGONAL line from object through focal point, then reflect (mirror) or refract (lens) horizontally. Might have to draw dotted lines again.
- 6. If image is on RIGHT side, it's VIRTUAL AND UPRIGHT If image is on LEFT side, it's REAL AND INVERTED

Formulas:

$$P = \frac{1}{f} = \frac{1}{d_{image}} + \frac{1}{d_{object}}$$

$$M = -\frac{d_{image}}{d_{object}} = \frac{h_{image}}{h_{object}}$$

For two lenses, MULTIPLY magnifications, ADD powers